3D Bioplotter Research Papers

Displaying all papers by A. Gloria (10 results)

Additive manufacturing and tissue engineering to improve outcomes in breast reconstructive surgery

Workshop on Metrology for Industry 4.0 and IoT (MetroInd4.0&IoT) 2019 Pages 38 - 42

Many women with early breast cancer undergo mastectomy as a consequence of an unfavorable tumor/breast ratio or because they prefer this option to breast conservation. As reported, breast reconstruction offers significant psychological advantages. Several techniques are currently available for the breast oncoplastic surgeon and offer interesting results in terms of aesthetic and patient-reported outcomes, using both breast implants and autologous tissues. On the other hand, advanced methodologies and technologies, such as reverse engineering and additive manufacturing, allow the development of customized porous scaffolds with tailored architectures, biological, mechanical and mass transport properties. Accordingly, the current research dealt with challenges, design…

3D fibre deposition and stereolithography techniques for the design of multifunctional nanocomposite magnetic scaffolds

Journal of Materials Science: Materials in Medicine 2015 Volume 26, Issue 250, Pages 250ff

Magnetic nanocomposite scaffolds based on poly(ε-caprolactone) and poly(ethylene glycol) were fabricated by 3D fibre deposition modelling (FDM) and stereolithography techniques. In addition, hybrid coaxial and bilayer magnetic scaffolds were produced by combining such techniques. The aim of the current research was to analyse some structural and functional features of 3D magnetic scaffolds obtained by the 3D fibre deposition technique and by stereolithography as well as features of multimaterial scaffolds in the form of coaxial and bilayer structures obtained by the proper integration of such methods. The compressive mechanical behaviour of these scaffolds was investigated in a wet environment at 37…

Advanced composites for hard-tissue engineering based on PCL/organic–inorganic hybrid fillers: From the design of 2D substrates to 3D rapid prototyped scaffolds

Polymer Composites 2013 Volume 34, Issue 9, Pages 1413–1417

The bioactivity of sol–gel synthesized poly(ε-caprolactone) (PCL)/TiO2 or poly(ε-caprolactone)/ZrO2 particles was already known. In designing innovative 2D composite substrates for hard-tissue engineering, the possibility to embed PCL/TiO2 or PCL/ZrO2 hybrid fillers into a PCL matrix was previously proposed. In the present study, the potential of 3D fiber-deposition technique to design morphologically controlled scaffolds consisting of PCL reinforced with PCL/TiO2 or PCL/ZrO2 hybrid fillers was demonstrated. Finite element analysis was initially carried out on 2D substrates to find a correlation between the previously obtained results from the small punch test and the Young’s modulus of the materials, whilst mechanical and biological…

Systematic analysis of injectable materials and 3D rapid prototyped magnetic scaffolds: from CNS applications to soft and hard tissue repair/regeneration

Procedia Engineering 2013 Volume 59, Pages 233–239

Over the past years, polymer-based materials have attracted research interest in the field of tissue repair and regeneration. As reported in literature, different injectable systems have been proposed, trying to reduce surgical invasiveness. In a first step of the current research, the rheological and functional features of injecatble hydrogel-based materials for central nervous system applications or soft tissue regeneration (collagen/PEG semi-IPNs) as well as for hard tissue engineering (alginate/iron-doped hydroxyapatite) were evaluated. Then, the study was also devoted to the development of 3D nanocomposite poly(ɛ- caprolactone)/iron-doped hydroxyapatite scaffolds for bone tissue engineering, providing a preliminary approach to assess magnetic attraction…

Three-Dimensional Poly(ε-caprolactone) Bioactive Scaffolds with Controlled Structural and Surface Properties

Biomacromolecules 2012 Volume 13, Issue 11, Pages 3510-3521

The requirement of a multifunctional scaffold for tissue engineering capable to offer at the same time tunable structural properties and bioactive interface is still unpaired. Here we present three-dimensional (3D) biodegradable polymeric (PCL) scaffolds with controlled morphology, macro-, micro-, and nano-mechanical performances endowed with bioactive moieties (RGD peptides) at the surface. Such result was obtained by a combination of rapid prototyping (e.g., 3D fiber deposition) and surface treatment approach (aminolysis followed by peptide coupling). By properly designing process conditions, a control over the mechanical and biological performances of the structure was achieved with a capability to tune the value of…

A route toward the development of 3D magnetic scaffolds with tailored mechanical and morphological properties for hard tissue regeneration: Preliminary study

Virtual and Physical Prototyping 2011 Volume 6, Issue 4, Pages 189-195

A basic approach toward the design of three-dimensional (3D) rapid prototyped magnetic scaffolds for hard-tissue regeneration has been proposed. In particular, 3D scaffolds consisting of a poly(ε-caprolactone) (PCL) matrix and iron oxide (Fe3O4) or iron-doped hydroxyapatite (FeHA) nanoparticles were fabricated through a 3D fibre deposition technique. As a first approach, a polymer to nanoparticle weight ratio of 90/10 (wt/wt) was used. The effect of the inclusion of both kinds of nanoparticles on the mechanical, magnetic, and biological performances of the scaffolds was studied. The inclusion of Fe3O4 and FeHA nanoparticles generally improves the modulus and the yield stress of the…

A basic approach toward the development of nanocomposite magnetic scaffolds for advanced bone tissue engineering

Jounal of Applied Polymer Science 2011 Volume 122, Issue 6, Pages 3599-3605

Magnetic scaffolds for bone tissue engineering based on a poly(ε-caprolactone) (PCL) matrix and iron oxide (Fe3O4) magnetic nanoparticles were designed and developed through a three-dimensional (3D) fiber-deposition technique. PCL/Fe3O4 scaffolds were characterized by a 90/10 w/w composition. Tensile and magnetic measurements were carried out, and nondestructive 3D imaging was performed through microcomputed tomography (Micro-CT). Furthermore, confocal analysis was undertaken to investigate human mesenchymal stem cell adhesion and spreading on the PCL/Fe3O4 nanocomposite fibers. The results suggest that nanoparticles mechanically reinforced the PCL matrix; the elastic modulus and the maximum stress increased about 10 and 30%, respectively. However, the maximum strain…

Poly (caprolactone) based magnetic scaffolds for bone tissue engineering

Journal of Applied Physics 2011 Volume 109, Issue 7, 07B313

Synthetic scaffolds for tissue engineering coupled to stem cells represent a promising approach aiming to promote the regeneration of large defects of damaged tissues or organs. Magnetic nanocomposites formed by a biodegradable poly(caprolactone) (PCL) matrix and superparamagneticiron doped hydroxyapatite (FeHA) nanoparticles at different PCL/FeHA compositions have been successfully prototyped, layer on layer, through 3D bioplotting. Magnetic measurements, mechanical testing, and imaging were carried out to calibrate both model and technological processing in the magnetized scaffold prototyping. An amount of 10% w/w of magnetic FeHA nanoparticles represents a reinforcement for PCL matrix, however, a reduction of strain at failure is also…

An approach in developing 3D fiber‐deposited magnetic scaffolds for tissue engineering

AIP Conference Proceedings 2010 1255, 420

Scaffolds should possess suitable properties to play their specific role. In this work, the potential of 3D fiber deposition technique to develop multifunctional and well‐defined magnetic poly(ε‐caprolactone)/iron oxide scaffolds has been highlighted, and the effect of iron oxide nanoparticles on the biological and mechanical performances has been assessed.

Dynamic Co-Seeding of Osteoblast and Endothelial Cells on 3D Polycaprolactone Scaffolds for Enhanced Bone Tissue Engineering

Journal of Bioactive and Compatible Polymers 2008 Volume 23, No. 3, Pages 227-243

Tissue engineered scaffolds must have an organized and repeatable microstructure which enables cells to assemble in an ordered matrix that allows adequate nutriental perfusion. In this work, to evaluate the reciprocal cell interactions of endothelial and osteoblast-like cells, human osteoblast-like cells (MG63) and Human Umbilical Vein Endothelial Cells (HUVEC) were co-seeded onto 3D geometrically controlled porous poly(ε-caprolactone) (PCL) and cultured by means of a rotary cell culture system (RCCS-4DQ). In our dynamic co-culture system, the lack of significant enhancement of osteoblast ALP activity and ECM production indicated that the microgravity conditions of the rotary system affected the cells by favoring…